
Summary of the Unpacking and Packing Software
Review

Jim Kowalkowski
Marc Paterno

1 Introduction
This document summarizes the results of the review of the DØ raw data packing and unpacking packages,
unpack_evt and unpack_reco.  Accompanying this text is a class diagram illustrating the modified design
we recommend for this system. In reviewing this design, we were guided by the following use cases, which
we understand to be the most significant:

• Unpacking in Level 3;

• Packing of simulated events, for use in tests of Level 3 code;

• Packing of simulated events, for efficient storage.

Because of the close relationship of this package to the Level 3 code, some of our suggestions concern
modifications of a small number of classes in the package l3base. Furthermore, because of the close
relationship between some of these packages to the various detector simulation packages, we have some
comments on how those packages can beneficially use what is presented here.

We have given the most weight to issues of efficiency (both in time and in storage space) and to issues of
maintainability, since it is very likely that the implementers of early code will not be available late in
Run II. Loss of such expertise in Run I caused significant difficulty in code maintenance.

2 Summary
We found the high-level architecture and analysis of the requirements to be very well thought through and
the problem to be well understood by the developers.  The concept of having a view of the raw data
available to users in a manner independent of the details of the implementation of the hardware within a
system, crate, module or channel is highly desirable.  Isolating the definition of how a channel is packed
within a module and reducing coupling to this function is a valuable design property.  The use of adapters
to give various views of channels is a good concept.  The use of a database to determine the crate configu-
ration for a given run dynamically is an extremely value tools. Our recommendations focus on how to gain
the most benefit from each of these design ideas.

3 Major Concerns

3.1 MCHModule and MCHSystem
Instances of the classes MCHModule and MCHSystem contain temporary event data during the process of
packing or unpacking. These objects also contain information describing the configurations of systems and
crates within the systems and the allowed modules within the crates. The lifetime of instances of these
classes is generally a complete run or longer. While the information of the configuration of the system of
modules during a run is clearly information critical to the unpacking or packing of data, we would prefer to
see this information separated from the knowledge of how to do packing and unpacking. We propose the
creation of a class RunConfiguration, which describes the configuration of crates and modules in a given
run. Instances of MCHSystem can then be configured (and re-configured if necessary, as is the case when
multiple runs are processed in a single execution of a program) using an instance of RunConfiguration.



Use of RunConfiguration would also help to decouple this part of the system from the stopgap use of RCPs
to configure the MCHSystem. In the first version of this code, a RunConfiguration object can be
instantiated by data given to it in an RCP object. In a later version, a more robust solution would be for the
RunConfiguration object to be recovered from some appropriate database.

We also propose modifications below that would remove the temporary storage of event data from the
MCHSystem and MCHModule classes. We think this makes use of these classes simpler to understand,
which is important for maintenance.

3.2 UnpDataChunk
We believe that the amorphous nature of the class UnpDataChunk allows (and perhaps even encourages)
developers to side-step the use of adapters; instead, they may directly manipulate the array of integers
within a channel. Our concerns were reinforced when we looked at some of existing code that creates an
instance of UnpDataChunk:

for(int cont=0; cont<=11; cont++){
      int modid = (cont << 4)|15;
      MCHID mid(sysid,modid,0);
      int version = 2;
      std::vector<int> data;
      data.push_back(0);       // trigger number
      data.push_back(cont+64); // crate number
      data.push_back(12);      // ADC card count
      data.push_back(0);       // BLS mode
      data.push_back(15);      // ADC mode
      data.push_back(1);       // data source, 1 = MC
      data.push_back(0);       // data type, 0 = collisions
      data.push_back(0);       // error status
      Channel chan(mid,version,data);
      chvec.push_back(chan);
    }                        // done looping over crate controllers
    if(count>0){             // store only if there are any channels
      UnpDataChunk* unptr = new UnpDataChunk(sysid,chvec);
      auto_ptr<UnpDataChunk> autochunk(unptr);

This code segment shows several calculations and manipulations that should be implemented within the
packing and unpacking package rather then here.

• The knowledge of how to calculate the module ID is replicated here. If the method of packing the
module ID is changed, it would be necessary to find all such snippets of code. The same can be
said of the calculation of the crate number.

• The offsets within the vector of integers are used directly, rather than through an adapter. If  a
design change requires the reordering of items in this array, it will be very difficult to find all
places in the code where changes would be needed.

In addition, this code uses the classes  vector<int> and Channel inefficiently. We think that the design of
UnpDataChunk will lead to other instances of such coding. We have included a few notes in the following
section regarding a more efficient method for the use of  vector.

4 Coding Recommendations

4.1 Use of Vectors
1. If the number of elements to be used in the vector is known at the time an instance is created, then it is

best to create the vector with the correct size. This prevents the reallocation and copying that can



accompany the resizing of a vector. In this case, vector::push_back() should not be used, since that will
put the added elements after the intended end of the vector.

2. An alternate possibility is to create the vector with the default constructor, and to use the function
vector::reserve() to allocate enough room to store the required data. In this case, vector::push_back()
can be used to fill the vector.

3. Vectors should not be cast to C style arrays.  A C array should be used if the additional features of the
vector class (such as fact that the class vector provides for copying and assignment). The C array can
be more efficient, because there is no memory overhead with an array, unlike with a vector. If a vector
is needed, then the iterator class vector::const_iterator or vector::iterator should be used for iteration;
the vector should not be cast to an array, which is not portable.

4. Initializing a vector which is a class data member using an assignment statement from a temporary
variable is inefficient. One should initialize such a data member in the colon-initialization list in the
class constructor.

4.2 Operators
Unless there is special reason to do otherwise, define comparison functions such as operator<( ),
operator>( )  and operator==( ), and the assignment function operator=( ) as member functions rather than
as global functions. This is because these operators often require access to private data. One reason to make
the functions global functions rather than member functions is if it necessary to have the compiler perform
automatic type conversion on the left-hand operand. Since this is never done for the object on which a
member function is being called, this can require the creation of a global function.

4.3 Space Allocation
Be very careful with the use of new and delete for allocating arrays, both of basic types and of objects.
When creation of an array is wanted, be sure to use "new unsigned int [array_size]" and not "new unsigned
int(initial_value)".  The latter allocates one unsigned int and initializes it to value initial_value, whereas the
former allocates as array of unsigned ints of length array_size.  Be sure to know at all times who owns the
memory and when it should be resized and deleted. Also, be sure to use delete( ) to deallocate the memory
allocated by new( ), and delete[ ]( ) to deallocate the memory allocated by new[ ]( ).

5 Design Recommendations

5.1 Overview
In producing the following design recommendations, we were concerned mostly with the issues of long
term code maintenance and of efficiency, both in terms of speed and of space. We view maintainability of
the code as a very important goal, and have stressed breaking up the functionality of the classes into more
cohesive pieces to enhance maintainability.

We have divided the problem into three areas:

• classes which hold and manipulate packed raw data (classes related to Level 3),

• higher-level unpacked data classes,

 classes which perform packing and unpacking and which describe the organization of the system.

5.1.1 Level 3 classes and utilities
We strongly recommend the addition of iteration methods to the class l3base::crate, to provide for iteration
over the modules within the crate. The current implementation requires that users of l3base::crate have
complete knowledge of the data format, and it forces users to invent their own method of iterating through
the modules, which is prone to error. This should be done by the introduction of an iterator class, which



when dereferenced returns a reference to a module, and for which operator++( ) is defined. The class crate
should have begin( ) and end( ) member functions which return such iterators.

We recommend that the package l3base take on the responsibility of providing a class that provides direct
access to a given module inside a crate.  This functionality is currently held with the classes MCHCrate and
VRBModule within the package unpack_reco.

We recommend that RawDataChunk have the ability to be built using a flattening or serializing technique.
This could involve having a pool of buffers large enough the hold the largest packed crate in a system, then
unrolling the modules into the buffer one after another -- directly from the unpacked data.

5.1.2 MCH classes
We strongly recommend that the MCHxxx classes be used as a mini-database or repository for
configuration information.  In addition, these classes could contain the methods (tools) necessary to
perform the packing and unpacking.  These classes should contain no event related data or temporary
results while packing and unpacking.

It was clear that, in the design of MCHSystem,  considerable thought had been given to the time spent in
creating objects with new( ) for every event. We recommend use of the class template PoolManaged<T> at
the appropriate places in order to make allocation and deallocation of objects inexpensive. The design of
MCHSystem can them be simplified, making it unnecessary for MCHSystem to retain as much state
information as it does in the current design. Since PoolManaged<T> provides the needed functionality
without requiring the user to use any special functions, it is possible to add this inheritance at a later date,
when it is most convenient, or when profiling demonstrates that the need is critical.

5.1.2.1 MCHModule breakup
We highly recommend that specific hardware channel classes be created that the MCHModule class will
use pack/unpack a module.  The MCHModule should control the pack/unpack of a module and describe a
configured module within a system.

5.1.3 UnpDataChunk
As noted on the accompanying diagram, the subclasses of UnpDataChunk may not be needed. If they are
not provided, then UnpDataChunk (or, better yet, an external function that manipulates UnpDataChunk)
would have to provide iteration over modules of a specific type within the UnpDataChunk. Furthermore,
this iterator will have to use a dynamic_cast in order to return the correct flavor of module pointer.

5.1.3.1 Channel Reorganization
The UnpDataChunk channel poses many problems.

The UnpDataChunk channel is too amorphous for users to employ directly in a good design, but as we saw
above, this does not mean that it will not be used. We recommend the introduction of concrete channel
classes, which provide the appropriate interface and data tailored for the detector elements involved.

5.1.4 Databases
The RCP database, while having the advantage of availability, is not really appropriate for use in
configuring systems for runs.  It is our recommendation that the infrastructure group be contacted to find
out what the status is of a real run configuration database.

The accompanying class diagram shows several classes associated with the functioning of such a database.
RunConfig is somewhat similar in concept to the class RCP, except that it is specific to the needs of
describing a run configuration. ConfigManager provides the programmatic view of the database. It could
be a Singleton class, that provides access to instances of RunConfig in a controlled fashion. ConfigManager
should also be responsible for issuing identifiers for RunConfig objects, so that it is possible for an



UnpDataChunk to have a record of which RunConfig was used to create it. This is what the class EnvID
was intended for.

5.2 Descriptions of Classes
Unless otherwise specified, all classes are defined in the mch namespace. The headings below show the
various subsystems; these are also indicated on the accompanying class diagram.

5.2.1 Level 3
Classes in this subsystem have short (one event) lifetimes, and carry or provides views of event data.

l3base::RawDataChunk: This class is the holder of the raw data. It provides for iteration over the crates
within the raw data.

l3base::L3Crate: This class provides a view of the data in a RawDataChunk. It provides for iteration over
the modules in the crate.

l3base::CrateInfo: This class provides another view of a crate. It provides random access to modules,
looked up by an (int) module identifier. It may not be necessary, since l3base::l3crate provides meaningful
access to crate data in the proposed design.

VRBModule: This class provided a temporary buffer in which event data was held during the packing
process. It is not strictly necessary in the proposed design.

5.2.2 Database (DB)
The classes in this subsystem all have long (more than one event) lifetimes, and carry no event data.

ConfigManager: This Singleton class provides access to RunConfig objects, and is responsible for
matching an identifying tag with a particular instance of RunConfig.

RunConfig: Each instance of this class describes the configuration of modules and crates in one run – either
a collider data run, or a simulated event sample. RunConfig objects are used to provide the description of a
run configuration to MCHSystem, which actually does packing and unpacking. It provides access to
descriptions of both “systems”  and crates.

ModuleDesc: This class is the description of a single type of module. Each instance carries the type of and
the estimated channel count for a specific module type. Any other information common to describing all
types of modules should also go here.

SystemInst: This class represents a single “system”, such as the CPS, Muon or Calorimeter. It carries the
description of the modules within the system, as well as the identities of the crates that need to be accessed
inorder to unpack (or pack) the module data.

CrateInst: This class represents a single crate, and carries the description of each module in the crate.

5.2.3 Packing and Unpacking (MCH)
The packer/unpacker classes in this subsystem have long (greater than one event) lifetime, and do not carry
event data. These classes manipulate channel classes which do contain event data.

MCHSystem: This class provides the interface for both packing and unpacking. An MCHSystem is created
using a RunConfig object that describes the layout of crates and modules appropriate for the given task of
packing or unpacking.

MCHModulePU: This is the base class for all module packer/unpacker classes. Each subclass must
implement the four member functions pack( ), unpack( ), wordCount( ) and chanCount( ). Each
MCHModulePU contains a reference to a description of the appropriate kind of module.

MCHCratePU: This class contains the knowledge necessary to unpack a single crate.



CalModulePU, RawCalChannel, RawCalHeaderChannel: These classes are an example of a the set of
concrete classes that need to be written for each system. They would not be part of the unpack_evt or
unpack_reco packages. The illustration shows several concrete channel classes, created while packing or
unpacking calorimeter data. Each class has a buffer, which is a pointer into a RawDataChunk; the pointer
indicates the location from which reading will occur during unpacking, or to which writing will occur
during packing.

5.2.4 Unpacking
Classes in this system have short (one event) lifetimes, and carry event data.

UnpDataChunk: this is the base class for all concrete unpacked data classes. It provides for iteration over
all modules within the chunk, but in the interface of UnpDataChunk, what is returned is a pointer to the
base class Module. Most users will want to use the interface of a concrete data chunk instead.

CalSystem is provided as an example of a concrete subclass of UnpDataChunk. It provides an interface that
allows iteration over modules, but of the concrete subclass CalModule, rather than the base class Module.
Also shown are several concrete subclasses of Channel; it is expected that each system will define the
appropriate channel classes.

CalChannelAdapter: This class is an example of an adapter class that can be used to given another view of
a concrete channel. In most cases, the adapter class holds no event data; it merely provides new methods to
access the data of the concrete channel class, perhaps by performing some simple (or not so simple)
manipulations before returning the data to the user.

5.2.5 Packing
Classes in this subsystem have long (more than one event) lifetimes, and do not carry event data. Some of
the classes do provide views of and access to event data, held in another object.

RawDataBuilder: Instances of this class are used to produce instances of RawDataChunk. A
RawDataBuilder is configured using a RunConfig object. RawDataBuilder incrementally adds systems to a
RawDataChunk, as those systems are added through the addData( ) function.

CrateData: This class provides a view of the crates within a RawDataChunk. Why?

ModuleData: This class provides a view of the modules within a RawDataChunk. Why?


